studies of the reaction mechanism between COPPER(II) SULPHATE AND EXCESS COPPER(I) SULPHIDE

H. Debiñski and J. Walczak
DEPARTMENT OF FUNDAMENTAL CHEMISTRY, THE TECHNICAL UNIVERSITY OF SZCZECIN, AL. PIASTÓW 42,71-065 SZCZECIN, POLAND

Abstract

The reaction process between CuSO_{4} and excess $\mathrm{Cu}_{2} \mathrm{~S}$ in the temperature range 650750 K was investigated by methods of thermal analysis and by studying the phase contentss of the products as a function of the fractional conversion. The reaction proceeds in three steps, with $\mathrm{Cu}_{2} \mathrm{~S}$ and a new phase described by the formula $\mathrm{Cu}_{2} \mathrm{SO}_{2}$ as intermediates. This new phase is liquid under the conditions of the reaction. The final product of the reaction is a defective crystalline $\mathrm{Cu}_{2} \mathrm{O}$.

A number of literature data [1-3] give evidence that the reaction between CuSO_{4} and $\mathrm{Cu}_{2} \mathrm{~S}$ in the temperature range $675 \leqslant T \leqslant 960 \mathrm{~K}$ under an equilibrium SO_{2} pressure $P_{\mathrm{SO}_{2}}=0.1 \mathrm{MPa}$ proceeds according to the following formula:

$$
\begin{equation*}
2 \mathrm{CuSO}_{4(\mathrm{~s})}+\mathrm{Cu}_{2} \mathrm{~S}_{(\mathrm{s})}=2 \mathrm{Cu}_{2} \mathrm{O}_{(\mathrm{s})}+3 \mathrm{SO}_{2(\mathrm{~g})} \tag{1}
\end{equation*}
$$

It is claimed by other authors that the products of this reaction may be $\mathrm{Cu}_{2} \mathrm{SO}_{4}$ and some phases of general formula $\mathrm{Cu}_{x} \mathrm{SO}_{y}$ which are not included in the reports on the thermodynamic properties of the $\mathrm{Cu}-\mathrm{S}-\mathrm{O}$ system [4-8].

Within the framework of studies on the reaction mechanism of this reaction, measurements in argon and SO_{2} atmospheres in the temperature range $600 \leqslant T \leqslant 850 \mathrm{~K}$ have been undertaken. The measurements were carried out using mixtures of the substrates with $z=2 / 2,2 / 4$ and $2 / 10$, where z is the initial ratio of the number of moles of CuSO_{4} to that of $\mathrm{Cu}_{2} \mathrm{~S}$. These mixtures were prepared from anhydrous CuSO_{4} and $\mathrm{Cu}_{2} \mathrm{~S}$ (exclusively the $\mathrm{Cu}_{1.96} \mathrm{~S}$ phase, as confirmed by chemical analysis, X -ray diffraction and thermogravimetric methods).

During thermal measurements the substrates also contained $30-10 \mathrm{wt} . \% \mathrm{SiO}_{2}$, which prevented ejection of the contents of the crucible. With a home-built apparatus, changes in mass and related thermal effects (DTA) were measured during linear temperature increase at a rate of $2 \mathrm{deg} / \mathrm{min}$. The phase composition of the reaction products, obtained under isothermal conditions, was determined using X-ray diffraction phase analysis methods. This composition was determined as a function of the
fractional conversion α, defined as the ratio of the mass loss to the maximum loss resulting from Eq. (1). The results are presented in Figs 1-3, which show the variations of $\mathrm{d} a / \mathrm{d} \tau$ and DTA with α and T.

Some illustrative X-ray diffraction patterns of the reaction products, for $z=2 / 2$ with $\alpha=0.025$ and $\alpha=0.363$, are presented in Fig. 4.

Fig. 1 TG and DTA curves of the mixtures $2 \mathrm{CuSO}_{4}+2 \mathrm{Cu}_{2} \mathrm{~S}$

Fig. 2 TG and DTA curves of the mixtures $2 \mathrm{CuSO}_{4}+4 \mathrm{Cu}_{2} \mathrm{~S}$

Fig. 3 TG and DTA curves of the mixtures $2 \mathrm{CuSO}_{4}+10 \mathrm{Cu}_{2} \mathrm{~S}$

Fig. 4 X-ray diffraction patterns with $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation of reaction products for $z=2 / 2: D=$ $\mathrm{CuSO}_{4}, E=\mathrm{Cu}_{2} \mathrm{~S}$. (a) $\alpha=0.025$, (b) $\alpha=0.363$

From the results, it has been established that the reaction between copper(II) sulphate and excess copper(I) sulphide proceeds in three steps:

$$
\begin{align*}
& \mathrm{Cu}_{1.96} \mathrm{~S}_{(\mathrm{s})}+(0.02-0.04) \mathrm{CuSO}_{4(\mathrm{~s})}= \\
& \quad=0.98 \mathrm{Cu}_{2} \mathrm{~S}_{(\mathrm{s})}+n \mathrm{X}+(0.030-0.045) \mathrm{SO}_{2(\mathrm{~g})} \tag{2}
\end{align*}
$$

$$
\begin{align*}
& 2 \mathrm{Cu}_{2} \mathrm{~S}_{(\mathrm{s})}+2 \mathrm{CuSO}_{4(\mathrm{~s})}=3 \mathrm{Cu}_{2} \mathrm{SO}_{2(1)}+\mathrm{SO}_{2(\mathrm{~g})} \tag{3}\\
& 2 \mathrm{Cu}_{2} \mathrm{SO}_{2(1)}=2 \mathrm{Cu}_{2} \mathrm{O}_{(\mathrm{s})}+\mathrm{Cu}_{2} \mathrm{~S}_{(\mathrm{s})}+2 \mathrm{SO}_{2(\mathrm{~g})} \tag{4}
\end{align*}
$$

The first step occurs in the range $\alpha \leqslant(0.02-0.03) z^{-1}$ and at temperatures $650<T<700 \mathrm{~K}$. It has not been possible to establish whether other solid products (X) apart from $\mathrm{Cu}_{2} \mathrm{~S}$ are present in this step and Eq . (2) results from the mass balance.

In the next step (Eq. 3), proceeding at $T>710 \mathrm{~K}$ and $\alpha \cong 0.36-0.40, \mathrm{CuSO}_{4}$ reacts completely and the content of $\mathrm{Cu}_{2} \mathrm{~S}$ reaches a minimum. For $z=2 / 2$ and $\alpha=0.36$ the products contain less than $2 \mathrm{~mol} \% \mathrm{CuSO}_{4}$ and $5 \mathrm{~mol} \% \mathrm{Cu}_{2} \mathrm{~S}$. The X -ray diffraction pattern of the main product consists of a set of lines which could not be ascribed to any of the known phases in the $\mathrm{Cu}-\mathrm{S}-\mathrm{O}$ system. From the results of chemical analysis it was concluded that the chemical formula $\mathrm{Cu}_{2} \mathrm{SO}_{2}$ can be ascribed to this new phase. Under the conditions of this reaction, $\mathrm{Cu}_{2} \mathrm{SO}_{2}$ is liquid: for $z=2 / 2$ and $2 / 4$ with $0.05<\alpha<0.20$, and for $z=2 / 10$ with $0.15<\alpha<0.40$, the products undergo sintering, whereas for $z=2 / 2$ and $2 / 4$ with $\alpha>0.20$ the products are completely liquefied.

In the third step (Eq. 4), for $\alpha>0.64-0.40$; the product contains not only $\mathrm{Cu}_{2} \mathrm{~S}$, but also copper(I) oxide with a strongly defective crystalline structure; this is manifested in a strong broadening of the appropriate diffraction lines, as well as in a strong shift of their positions towards lower diffraction angles.

In the range $0.10<\alpha<0.80$ a slight content of metallic copper is also present in the reaction products. This fact has not been included in the discussion in this investogation.

References

1 J. Walczak, Prace Nauk, Pol. Szczec., nr 50, (1975).

2 T. R. Ingraham, Trans. Met. Soc. AIME, 233 (1965) 359.

3 W. Reinders and F. Goudrian, 2. Anorg. Allg. Chem., (1923), 85.
4 R. Schenck and E. Hempelmann, Z. Angew. Chem., 26 (1913), 685.

5 J. V. Margulis and V. D. Ponomarev, Izv. Akad. Nauk., Ser. met. obog. i ogneup., 3 (1958) 9.
6 J. V. Margulis, Sb. Nautch. Tr. Vses. Nautch.-Issled. Gornomet. Inst. Cvet. Met., 17 (1968) 5.
7 M. Nagamori and F. Habashi, Met. Trans., 5 (1974) 523.

[^0]Резюме Реакционной процесс между CuSO_{4} и избытком $\mathrm{Cu}_{2} \mathrm{~S}$ был исспедован в области температур 650-750 К методом термического анализа и изучением фазового состава продуктов в зависимости от фракционированнсго превращения. Реакция протекает в три стадии с образованием промежуточных продуктов $\mathrm{Cu}_{2} \mathrm{~S}$ и новой фазы, описываемой формулой $\mathrm{Cu}_{2} \mathrm{SO}_{2}$ и которан в условиях реакиии пвляется жидкой. Конячным продуктом реакции คвлнетсค кристаллическан $\mathrm{Cu}_{2} \mathrm{O}$ с нарушенной структурой.

[^0]: Zusammenfassung - Der Verlauf der Reaktion zwischen CuSO_{4} und überschüssigem $\mathrm{Cu}_{2} \mathrm{~S}$ im Temperaturbereich von 650-750 K wurde mittels thermoanalytischer Methoden und durch Ermittlung der Phasenzusammensetzung in Abhängigkeit von der Konversion untersucht. Die Reaktion verläuft in drei Schritten mit $\mathrm{Cu}_{2} \mathrm{~S}$ und einer neuen Phase der Zusammensetzung $\mathrm{Cu}_{2} \mathrm{SO}_{2}$ als Zwischenproduke. Die neue Phase ist unter den Reaktionsbedingungen eine Flüssigkeit. Endprodukt der Reaktion ist nicht völlig kristallines $\mathrm{Cu}_{2} \mathrm{O}$.

